Как осуществляется транспорт веществ через клеточную мембрану. Пассивный транспорт веществ через мембрану: описание, особенности. Видео: Транспорт веществ в организме

Состоит в её способности пропускать в клетку и из неё различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости , то есть способности пропускать одни вещества и не пропускать другие.

Транспорт сквозь липидный бислой (простая диффузия) и транспорт при участии мембранных белков

Легче всего проходят через липидный бислой неполярные молекулы с малой молекулярной массой (кислород, азот, бензол). Достаточно быстро проникают сквозь липидный бислой такие мелкие полярные молекулы, как углекислый газ, оксид азота, вода, мочевина. С заметной скоростью проходят через липидный бислой этанол и глицерин, а также стероиды и тиреоидные гормоны. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутрення часть гидрофобна. Так, для воды коэффициент проницаемости (см/с) составляет около 10 −2 , для глицерина - 10 −5 , для глюкозы - 10 −7 , а для одновалентных ионов - меньше 10 −10 .

Перенос крупных полярных молекул и ионов происходит благодаря белкам-каналам или белкам-переносчикам . Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, в мембранах многих клеток - водные каналы аквапорины , а также белки-переносчики для глюкозы, разных групп аминокислот и многих ионов.

Активный и пассивный транспорт

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

  • 1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента
  • 2) Симпорт - транспорт двух веществ в одном направлении через один переносчик.
  • 3) Антипорт - перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередь, создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий-калиевая АТФаза (или натрий-зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки - ионы натрия.

Работа натрий-калиевой АТФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона N a + {\displaystyle Na^{+}} и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы N a + {\displaystyle Na^{+}} отщепляются, а P O 4 3 − {\displaystyle PO_{4}^{3-}} замещается на два иона . Затем конформация переносчика изменяется на первоначальную, и ионы K + {\displaystyle K^{+}} оказываются на внутренней стороне мембраны. Здесь ионы K + {\displaystyle K^{+}} отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

В итоге во внеклеточной среде создается высокая концентрация ионов N a + {\displaystyle Na^{+}} , а внутри клетки - высокая концентрация K + {\displaystyle K^{+}} . Работа N a + {\displaystyle Na^{+}} , K + {\displaystyle K^{+}} - АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней - отрицательный.

В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы . То есть, существует 2 принципиальных типа транспорта ионов через мембрану: пассивный и активный.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

  • концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
  • концентрация K+ внутри клетки выше, чем снаружи.

Механизм работы натрий-калиевого насоса. НКН за один цикл переносит 3 иона Na+ из клетки и 2 иона K+ в клетку. Это происходит из-за того, что молекула интегрального белка может находиться в 2 положениях. Молекула белка, образующая канал, имеет активный участок, который связывает либо Na+, либо K+. В положении (конформации) 1 она обращена внутрь клетки и может присоединять Na+. Активируется фермент АТФаза, расщипляющая АТФ до АДФ. Вследствие этого молекула превращается в конформацию 2. В положении 2 она обращена вне клетки и может присоединять K+. Затем конформация вновь меняет и цикл повторяется.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами :

  • пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
  • всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами :

  • пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
  • могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня потенциала покоя, канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

  • хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
  • потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение потенциала покоя (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

И активный транспорт. Пассивный транспорт происходит без затрат энергии по электрохимическим градиентом. К пассивному относятся диффузия (простая и облегченная), осмос, фильтрация. Активный транспорт требует энергии и происходит вопреки концентрационном или электрическом градиента.
Активный транспорт
Это транспорт веществ вопреки концентрационном или электрическом градиента, что происходит с затратами энергии. Различают первичный активный транспорт, что требует энергии АТФ, и вторичный (создание за счет АТФ ионных концентрационных градиентов по обе стороны мембраны, а уже энергия этих градиентов используется для транспорта).
Первичный активный транспорт широко используется в организме. Он участвует в создании разности электрических потенциалов между внутренней и внешней сторонами мембраны клетки. С помощью активного транспорта создаются различные концентрации Na +, К +, Н +, СИ "" и других ионов в середине клетки и во внеклеточной жидкости.
Лучше исследованы транспорт Na+ и К+ - Na+,-K +-Hacoc. Этот транспорт происходит с участием глобулярного белка с молекулярной массой около 100 000. Белок имеет три участка для связывания Na + на внутренней поверхности и два участка для связывания К + на внешней поверхности. Наблюдается высокая активность АТФ-азы на внутренней поверхности белка. Энергия, образующаяся при гидролизе АТФ, приводит конформационные изменения белка и при этом выводится три ионы Na + из клетки и вводится в нее два иона К + С помощью такого насоса создаются высокая концентрация Na + во внеклеточной жидкости и высокая концентрация К + - в клеточной.
В последнее время интенсивно изучаются Са2 +-насосы, благодаря которым концентрация Са2 + в клетке в десятки тысяч раз ниже, чем вне ее. Различают Са2 +-насосы в клеточной мембране и в органеллах клетки (саркоплазматической сети, митохондрии). Са2 +-насосы тоже функционируют за счет белка-переносчика в мембранах. Этот белок имеет высокую АТФ-азную активность.
Вторичный активный транспорт. Благодаря первичном активном транспорта создается высокая концентрация Na + вне клетки, возникают условия для диффузии Na + в клетку, но вместе с Na + другие вещества могут войти в нее. Этот транспорт »направлен в одну сторону, называется симпорта. В противном случае вход Na + стимулирует выход другого вещества из клетки, это два потока, направленные в разные стороны, - антипорт.
Примером симпорта может быть транспорт глюкозы или аминокислот вместе с Na +. Белок-переносчик имеет два участка для связывания Na + и для связывания глюкозы или аминокислоты. Идентифицированы пять отдельных белков для связывания пяти типов аминокислот. Известны и другие виды симпорта - транспорт N + вместе с в клетку, К + и Сl-из клетки и др..
Почти во всех клетках существует механизм антипорта - Na + переходит в клетку, а Са2 + выходит из нее, или Na + - в клетку, а Н + - из нее.
Активно транспортируются через мембрану Mg2 +, Fe2 +, НСО3-и много других веществ.
Пиноцитоз - это один из видов активного транспорта. Он заключается в том, что некоторые макромолекулы (преимущественно белков, макромолекулы которых имеют диаметр 100-200 нм) присоединяются к рецепторам мембраны. Эти рецепторы специфичны для разных белков. Присоединение их сопровождается активизацией сократительных белков клетки - актина и миозина, которые образуют и закрывают полость с этим внеклеточным белком и небольшим количеством внеклеточной жидкости. При этом образуется пиноцитозных пузырек. У него выделяются ферменты гидролизуют этот белок. Продукты гидролиза усваиваются клетками. Пиноцитоз требует энергии АТФ и наличия Са2 + во внеклеточной среде.
Таким образом, есть много видов транспорта веществ через клеточные мембраны. На разных сторонах клетки (в апикальной, базальной, латеральной мембранах) могут происходить различные виды транспорта. Примером этого могут быть процессы, происходящие в

Транспорт? Трансмембранное перемещение различных высокомолекулярных соединений, клеточных компонентов, надмолекулярных частиц, которые не способны проникать сквозь каналы в мембране, осуществляется посредством специальных механизмов, например, с помощью фагоцитоза, пиноцитоза, экзоцитоза, переноса через межклеточное пространство. То есть перемещение веществ сквозь мембрану может происходить при помощи различных механизмов, которые подразделяются по признакам участия в них специфических переносчиков, а также по энергозатратам. Ученые подразделяют транспорт веществ на активный и пассивный.

Основные виды транспорта

Пассивный транспорт представляет собой перенос вещества сквозь биологическую мембрану по градиенту (осмотический, концентрационный, гидродинамический и другие), не требующий расхода энергии.

Представляет собой перенос вещества сквозь биологическую мембрану против градиента. При этом расходуется энергия. Примерно 30 - 40% энергии, которая образуется в результате метаболических реакции в организме человека, тратится на осуществление активного транспорта веществ. Если рассматривать функционирование человеческих почек, то в них на активный транспорт тратится около 70 - 80% потребленного кислорода.

Пассивный транспорт веществ

он подразумевает перенос различных веществ сквозь биологические мембраны по разнообразным могут быть:

  • градиент электрохимического потенциала;
  • градиент концентрации вещества;
  • градиент электрического поля;
  • градиент осмотического давления и прочие.

Процесс осуществления пассивного транспорта не требует каких-либо энергозатрат. Он может происходить при помощи облегченной и простой диффузии. Как нам известно, диффузия представляет собой хаотическое перемещение молекул вещества в разнообразных средах, которое обусловлено энергией тепловых колебаний вещества.

Если частица вещества является электронейтральной, то направление, в котором будет происходить диффузия, определяется разностью концентрации веществ, содержащихся в средах, которые разделены мембраной. К примеру, между отсеками клетки, внутри клетки и вне ее. Если частицы вещества, его ионы имеют электрический заряд, то диффузия будет зависеть не только от разности концентраций, но и от величины заряда данного вещества, наличия и знаков заряда с обеих сторон мембраны. Величина электрохимического градиента определяется алгебраической суммой электрического и концентрационного градиентов на мембране.

Что обеспечивает транспорт через мембрану?

Пассивный транспорт мембраны возможен, благодаря наличию вещества, осмотического давления, возникающего между разными сторонами мембраны клетки или электрического заряда. К примеру, средний уровень содержащихся в плазме крови ионов Na+ составляет около 140 мМ/л, а содержание его в эритроцитах примерно в 12 раз больше. Подобный градиент, выражающийся в разности концентраций, способен создавать движущую силу, обеспечивающую перенос молекул натрия в эритроциты из плазмы крови.

Следует отметить, что скорость подобного перехода весьма низкая из-за того, что для клеточной мембраны характерна низкая проницаемость для ионов данного вещества. Гораздо большей проницаемостью данная мембрана обладает в отношении ионов калия. Энергия клеточного метаболизма не используется для совершения процесса простой диффузии.

Скорость диффузии

Активный и пассивный транспорт веществ через мембрану характеризуется скоростью диффузии. Описать ее можно при помощи уравнения Фика: dm/dt=-kSΔC/x.

В данном случае dm/dt представляет собой количество того вещества, которое диффундирует за одну единицу времени, а k представляет собой коэффициент процесса диффузии, который характеризует проницаемость биомембраны для диффундирующего вещества. S равняется площади, на которой происходит диффузия, а ΔC выражает разность концентрации веществ с разных сторон биологической мембраны, при этом x характеризует расстояние, которое имеется между точками диффузии.

Очевидно, что через мембрану наиболее легко будут перемещаться те вещества, которые диффундируют одновременно по градиентам концентраций и электрических полей. Немаловажным условием для осуществления диффузии вещества сквозь мембрану являются физические свойства самой мембраны, ее проницаемость для каждого конкретного вещества.

В силу того, что бислой мембраны сформирован углеводородными радикалами фосфолипидов, обладающих природы с легкостью диффундируют через нее. В частности, это относится к веществам, которые легко растворяются в липидах, например, тиреоидные и стероидные гормоны, а также некоторые вещества наркотического характера.

Минеральные ионы и низкомолекулярные вещества, имеющие гидрофильную природу, диффундируют посредством пассивных ионных каналов мембраны, которые сформированы из каналообразующих белковых молекул, а иногда сквозь дефекты упаковки мембраны фосфолипидных молекул, которые возникают в клеточной мембране в результате тепловой флуктуации.

Пассивный транспорт через мембрану - процесс очень интересный. Если условия нормальные, то значительные количества вещества могут проникать сквозь бислой мембраны только в том случае, если они неполярные и имеют небольшой размер. В противном случае перенос происходит посредством белков-переносчиков. Подобные процессы с участием белка-переносчика называются не диффузией, а транспортом вещества сквозь мембрану.

Облегченная диффузия

Облегченная диффузия, подобно простой диффузии, происходит по градиенту концентрации вещества. Основное отличие состоит в том, что в процессе переноса вещества принимает участие специальная молекула белка, называемая переносчиком.

Облегченная диффузия является видом пассивного переноса молекул вещества сквозь биомембраны, осуществляемым по градиенту концентрации при помощи переносчика.

Состояния белка-переносчика

Белок-переносчик может находится в двух конформационных состояниях. К примеру, в состоянии А данный белок может обладать сродством с веществом, которое он переносит, его участки для связывания с веществом развернуты внутрь, за счет чего формируется пора, открытая к одной стороне мембраны.

После того, как белок связался с переносимым веществом, изменяется его конформация и происходит его переход в состояние Б. При таком превращении у переносчика теряется сродство с веществом. Из связи с переносчиком оно высвобождается и перемещается в пору уже по другую сторону мембраны. После того, как вещество перенесено, белок-переносчик снова изменяет свою конформацию, возвращаясь в состояние А. Подобный транспорт вещества сквозь мембрану называется унипортом.

Скорость при облегченной диффузии

Низкомолекулярные вещества вроде глюкозы могут транспортироваться сквозь мембрану посредством облегченной диффузии. Такой транспорт может происходить из крови в мозг, в клетки из интерстициальных пространств. Скорость переноса вещества при таком виде диффузии способна достигать до 10 8 частиц через канал за одну секунду.

Как мы уже знаем, скорость активного и пассивного транспорта веществ при простой диффузии пропорциональна разности концентраций вещества с двух сторон мембраны. В случае же облегченной диффузии эта скорость увеличивается пропорционально увеличивающей разности концентрации вещества до определенного максимального значения. Выше этого значения скорость не увеличивается, даже несмотря на то что разность концентраций с разных сторон мембраны продолжает увеличиваться. Достижение такой максимальной точки скорости в процессе осуществления облегченной диффузии можно объяснить тем, что максимальная скорость предполагает вовлечение в процесс переноса всех имеющихся белков-переносчиков.

Какое понятие еще включают в себя активный и пассивный транспорт через мембраны?

Обменная диффузия

Подобный вид транспорта молекул вещества сквозь клеточную мембрану характеризуется тем, что в обмене участвуют молекулы одного и того же вещества, которые находятся с разных сторон биологической мембраны. Стоит отметить, что при таком транспорте веществ с обеих сторон мембраны абсолютно не изменяется.

Разновидность обменной диффузии

Одной из разновидностей обменной диффузии является обмен, при котором молекула одного вещества меняется на две и более молекул иного вещества. К примеру, один из путей, по которому происходит удаление положительных ионов кальция из гладкомышечных клеток бронхов и сосудов из сократительных миоцитов сердца - это обмен их на ионы натрия, расположенные вне клетки. Один ион натрия в этом случае обменивается на три иона кальция. Таким образом, происходит движение натрия и кальция сквозь мембрану, которое носит взаимообусловленный характер. Подобный вид пассивного транспорта сквозь клеточную мембрану называется антипортом. Именно таким образом клетка способна освободиться от ионов кальция, которые имеются в избытке. Этот процесс является необходимым для того, чтобы гладкие миоциты и кардиомиоциты расслаблялись.

В данной статье был рассмотрен активный и пассивный транспорт веществ через мембрану.

Поляризация мембраны в состоянии покоя, т.е. возникновение МП, при наличии трансмембранного градиента концентраций ионов объясняется прежде всего выходом по каналам утечки внутриклеточного К+ в окружающую клетку среду. Так, в состоянии физиологического покоя мембрана, например, нервных волокон в 25 раз более проницаема для К+, чем для Na+. Выход положительно заряженных К+ приводит к формированию положительного заряда на наружной поверхности мембраны. Органические анионы - крупномолекулярные соединения, которые несут отрицательный заряд и для которых мембрана клетки непроницаема, придают в этих условиях внутренней поверхности мембраны отрицательный заряд. На степень поляризации мембраны в состоянии покоя оказывает влияние перемещение через нее и других ионов, но в условиях относительного покоя оно невелико.

В состоянии покоя потоки ионов через мембрану, движущиеся по их концентрационным градиентам, в конечном счете должны были бы привести к выравниванию концентрации ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране существует особый молекулярный механизм, который получил название ионного насоса. Так, например, натриево-кали- евый насос обеспечивает выведение из цитоплазмы клетки Na+ и введение в цитоплазму КЛ Ионный насос перемещает ионы против их концентрационного градиента и, следовательно, работает с затратой энергии на преодоление силы градиента. Вместе с тем работа К4-, Na+-Hacoca является еще одним значимым фактором в создании МП. Выкачивая за каждый цикл работы из клетки три Na+ и вводя в клетку лишь два К+, насос формирует внутриклеточный отрицательный заряд, имеющий электрогенное происхождение, суммирующийся с зарядом, связанным с диффузией К+.

Таким образом, возникновение и поддержание МП покоя обусловлено избирательной проницаемостью мембраны клетки для ионов и работой натриево-калиевого насоса.

Мембранный потенциал покоя создает электрическое поле, которое обеспечивает закрытое состояние активационных «ворот» и открытое состояние инактивационных «ворот» натриевых каналов, а также сохранение определенной пространственной организации мембраны.

Пассивный транспорт

________________________

Осмос - движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в области, где концентрация растворенного вещества выше, химический потенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по градиенту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состоянии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое

давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация веществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набухают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содержимого или поступающую в них воду. В большинстве случаев клетки используют первую возможность - откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

а) количеством содержащихся в них и неспособных к проникновению через мембрану веществ;

б) концентрацией в интерстиций соединений, способных проходить через мембрану;

в) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Явления фильтрации лежат в основе многих физиологических процессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.

Существует несколько видов диффузии.

▲ Простая диффузия через липидный матрикс мембраны, с помощью которой проходят малые неполярные молекулы - 02, N2, этанол, эфир, малые полярные молекулы, не имеющие заряда - мочевина, аммиак, С02, а также жирорастворимые вещества - низкомолекулярные жирные кислоты, гормоны щитовидной железы, стероидные гормоны половых желез и коры надпочечников, витамины А и D3.

ж Простая диффузия через ионные каналы мембраны обеспечивает движение неорганических ионов по концентрационному или электрохимическому градиенту.

а. Облегченная диффузия с помощью переносчиков лежит в основе транспорта большинства полярных молекул соединений среднего размера, не имеющих заряда: глюкозы, аминокислот, нуклеотидов. Как правило, переносчик связывается с определенным веществом или родственной группой веществ. При наличии высоких концентраций вещества возможно ограничение объема и скорости транспорта из-за насыщения переносчиков.

Активный транспорт осуществляет перенос веществ против градиента концентраций и требует затрат энергии. На обеспечение активного транспорта клетки затрачивают от 30 до 70 % энергии, образующейся в процессе жизнедеятельности. Источником энергии для активного транспорта в клетке являются энергия трансмембранных ионных градиентов и энергия связей АТФ. В зависимости от вида используемой для транспорта энергии различают два вида активного транспорта.

ж Первично активный транспорт, создаваемый работой мембранных белков-насосов. Эти белки соединяют в себе свойства транспортной системы для переноса ионов и свойства фермента, расщепляющего АТФ. Получаемая энергия используется насосом для транспорта ионов. В мембранах клеток обнаружены следующие насосы:

К+~, На+-насос\ переносит три Na+ наружу в обмен на два К+ внутрь, т.е. против градиента концентраций; на один цикл работы насоса расходуется 1 мол. АТФ; за счет работы этого насоса создается концентрационный градиент для Na+ и К+, который используется для формирования МП клетки, а также вторичного активного транспорта;

Са2+-насос: встроен как в мембрану клетки, так и в мембраны клеточных органелл; в связи с высокой активностью Са2+ как регулятора многих процессов, протекающих в клетке, его внутриклеточная концентрация должна строго контролироваться; насос откачивает Са2+ во внешнюю среду клетки или во внутриклеточные депо;

Н+-насос, протонный насос, работающий как в наружной мембране, так и в мембранах клеточных органелл; переносит Н+ против градиента концентраций из клетки в окружающую среду, например из обкладочных клеток желудка в желудочный сок или из клеток эпителия почечных канальцев в канальцевую мочу.

Вторично активный транспорт использует для переноса веществ энергию градиента концентрации какого-либо иона, например Na+, созданную за счет работы насоса. Таким способом в клетках слизистой кишки или в канальцах почки транспортируются глюкоза и аминокислоты. Натрий, перемещаясь по электрохимическому градиенту молекулой-переносчиком, одновременно способствует переносу против градиента концентраций глюкозы или аминокислот, связанных с этим же переносчиком.

Разновидностью вторично активного транспорта является работа систем ионного обмена и систем совместного транспорта. Источником энергии для транспорта одного иона является энергия градиента концентраций другого. Транспорт может осуществляться как в клетку, так и из клетки. Описаны следующие разновидности ионообменников:

Na+-, Са2+-обмен обеспечивает выкачивание из клетки Са2+ за счет движения Na+ по электрохимическому градиенту внутрь клетки; механизм работает в нейронах, миоцитах, клетках эпителия и эндокринных;

Na+~, Н+-обмен обеспечивает выведение протонов из клетки в среду за счет энергии градиента натрия; механизм работает в нейронах, клетках печени, мышц, эпителия канальцев нефрона;

С/ -, нсо j - самый высокоскоростной ионообменник, участвующий в транспорте анионов; обеспечивает поглощение эритроцитами образовавшейся в тканях С02 и выход ее из них в виде НС03 в обмен на поступление С1~; механизм работает, помимо эритроцитов, в миоцитах, эпителиальных клетках почки и кишки;

Na+-, К"-, О -симпорт группы ионов в одном направлении; источником энергии может быть градиент концентрации любого из этих ионов; направление транспорта определяется состоянием гомеостаза клетки; механизм работает в эритроцитах человека и связан с необходимостью уменьшения концентрации в клетке этих ионов.

Транспорт макромолекул - белков, полисахаридов, нуклеиновых кислот - осуществляется путем эндоцитоза и экзоци- тоза.

Эндоцитоз заключается в образовании углубления с последующим отшнуровыванием участка мембраны, с которым контактирует макромолекулярный субстрат. Образовавшиеся эндоцитозные пузырьки транспортируются либо к лизосомам для последующего расщепления вещества лизосомальными ферментами, либо к противоположной стороне клетки и выделяют содержимое путем экзоцитоза. Существует три вида эндоцитоза:

Пиноцитоз - неспецифический захват внеклеточной жидкости с растворенными в ней макромолекулами для использования последних для нужд клетки или для переноса сквозь клетку;

Эндоцитоз, опосредуемый рецепторами, - захват веществ после их взаимодействия с рецепторами мембра-ны; после впячивания мембраны и ее отшнуровыва- ния образовавшиеся эндосомы транспортируются к ли- зосомам для ферментативного расщепления; таким образом инактивируются гормоны, иммуноглобулины, антигены;

Фагоцитоз - захват крупных клеточных частиц специализированными клетками - микро- и макрофагами с последующим перевариванием.

Экзоцитоз - выделение из клетки упакованных в гранулы (пузырьки) субстратов путем слияния мембран гранул с мембраной клетки; так выделяются гормоны, медиаторы, пищеварительные соки.