Найти криволинейный интеграл. Вычислить криволинейный интеграл I рода по дуге L. Кривая дана в параметрической форме

Лекция 5 Криволинейные интегралы 1 и 2 рода, их свойства..

Задача о массе кривой. Криволинейный интеграл 1 рода.

Задача о массе кривой. Пусть в каждой точке кусочно-гладкой материальной кривой L: (AB) задана ее плотность . Определить массу кривой.

Поступим так же, как мы поступали при определении массы плоской области (двойной интеграл) и пространственного тела (тройной интеграл).

1. Организуем разбиение области- дуги L на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

3. Построим интегральную сумму , где - длина дуги (обычно вводятся одни и те же обозначения для дуги и ее длины). Это – приблизительное значение массы кривой. Упрощение состоит в том, что мы предположили плотность дуги постоянной на каждом элементе и взяли конечное число элементов.

Переходя к пределу при условии (условие В ), получим криволинейный интеграл первого рода как предел интегральных сумм:

.

Теорема существования.

Пусть функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл первого рода существует как предел интегральных сумм.

Замечание. Предел этот не зависит от

Свойства криволинейного интеграла первого рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = +

3. .Здесь – длина дуги .

4. Если на дуге выполнено неравенство , то

Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.

Заметим, что, в частности, возможно

5. Теорема об оценке.

Если существуют константы , что , то

Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.

6. Теорема о среднем (значении интеграла).

Существует точка , что

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на L, получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве L, то в некоторой точке функция должна принимать это значение. Следовательно, .

Вычисление криволинейного интеграла первого рода.

Параметризуем дугу L: AB x = x(t), y = y(t), z =z (t). Пусть t 0 соответствует точке A, а t 1 соответствует точке B. Тогда криволинейный интеграл первого рода сводится к определенному интегралу ( - известная из 1 семестра формула для вычисления дифференциала длины дуги):

Пример. Вычислить массу одного витка однородной (плотность равна k) винтовой линии: .

Криволинейный интеграл 2 рода.

Задача о работе силы.

Какую работу производит сила F (M ) при перемещении точки M по дуге AB ?

Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).

1. Организуем разбиение области- дуги AB на элементы – элементарные дуги так, чтобы эти элементы не имели общих внутренних точек и(условие А )

2. Отметим на элементах разбиения «отмеченные точки» M i и вычислим в них значения функции

3. Построим интегральную сумму , где вектор, направленный по хорде, стягивающей -дугу .

4. Переходя к пределу при условии (условие В ), получим криволинейный интеграл второго рода как предел интегральных сумм (и работу силы):

. Часто обозначают

Теорема существования.

Пусть вектор - функция непрерывна на кусочно-гладкой дуге L. Тогда криволинейный интеграл второго рода существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит от

Способа выбора разбиения, лишь бы выполнялось условие А

Выбора «отмеченных точек» на элементах разбиения,

Способа измельчения разбиения, лишь бы выполнялось условие В

Свойства криволинейного интеграла 2 рода.

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

2. Аддитивность.
Если, то = + .

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы L 1 , так и элементы L 2 . Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат.

На случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:

где f (x , y ) - функция двух переменных, а L - кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB .

Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?

Пусть на плоскости расположен отрезок AB некоторой кривой L , а функция двух переменных f (x , y ) определена в точках кривой L . Пусть мы выполняем с этим отрезком кривой следующий алгоритм.

  1. Разделить кривую AB на части точками (рисунки ниже).
  2. В каждой части свободно выбрать точку M .
  3. Найти значение функции в выбранных точках.
  4. Значения функции умножить на
    • длины частей в случае криволинейного интеграла первого рода ;
    • проекции частей на ось координат в случае криволинейного интеграла второго рода .
  5. Найти сумму всех произведений.
  6. Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.

Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f (x , y ) по кривой AB .


первого рода

Случай криволинейного интеграла
второго рода

Введём следующие ообозначения.

M i (ζ i ; η i ) - выбранная на каждом участке точка с координатами.

f i (ζ i ; η i ) - значение функции f (x , y ) в выбранной точке.

Δs i - длина части отрезка кривой (в случае криволинейного интеграла первого рода).

Δx i - проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).

d = maxΔs i - длина самой длинной части отрезка кривой.

Криволинейные интегралы первого рода

Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:

.

Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл . Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:

В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B ) считать началом отрезка, а какую концом, то есть

.

Криволинейные интегралы второго рода

Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:

.

В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:

.

При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy . Тогда получим интеграл

.

На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P (x , y ) и f = Q (x , y ) и интегралы

,

а сумма этих интегралов

называется общим криволинейным интегралом второго рода .

Вычисление криволинейных интегралов первого рода

Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.

Пусть на плоскости задана кривая y = y (x ) и отрезку кривой AB соответствует изменение переменной x от a до b . Тогда в точках кривой подынтегральная функция f (x , y ) = f (x , y (x )) ("игрек" должен быть выражен через "икс"), а дифференциал дуги и криволинейный интеграл можно вычислить по формуле

.

Если интеграл проще интегрировать по y , то из уравнения кривой нужно выразить x = x (y ) ("икс" через "игрек"), где и интеграл вычисляем по формуле

.

Пример 1.

где AB - отрезок прямой между точками A (1; −1) и B (2; 1) .

Решение. Составим уравнение прямой AB , используя формулу (уравнение прямой, проходящей через две данные точки A (x 1 ; y 1 ) и B (x 2 ; y 2 ) ):

Из уравнения прямой выразим y через x :

Тогда и теперь можем вычислять интеграл, так как у нас остались одни "иксы":

Пусть в пространстве задана кривая

Тогда в точках кривой функцию нужно выразить через параметр t () а дифференциал дуги , поэтому криволинейный интеграл можно вычислить по формуле

Аналогично, если на плоскости задана кривая

,

то криволинейный интеграл вычисляется по формуле

.

Пример 2. Вычислить криволинейный интеграл

где L - часть линии окружности

находящаяся в первом октанте.

Решение. Данная кривая - четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра . Так как

то дифференциал дуги

Подынтегральную функцию выразим через параметр t :

Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:

Вычисление криволинейных интегралов второго рода

Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.

Кривая дана в декартовых прямоугольных координатах

Пусть дана кривая на плоскости уравнением функции "игрек", выраженной через "икс": y = y (x ) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение "игрека" через "икс" и определим дифференциал этого выражения "игрека" по "иксу": . Теперь, когда всё выражено через "икс", криволинейный интеграл второго рода вычисляется как определённый интеграл:

Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции "икс", выраженной через "игрек": x = x (y ) , . В этом случае формула для вычисления интеграла следующая:

Пример 3. Вычислить криволинейный интеграл

, если

а) L - отрезок прямой OA , где О (0; 0) , A (1; −1) ;

б) L - дуга параболы y = x ² от О (0; 0) до A (1; −1) .

а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке - синяя). Напишем уравнение прямой и выразим "игрек" через "икс":

.

Получаем dy = dx . Решаем данный криволинейный интеграл:

б) если L - дуга параболы y = x ² , получим dy = 2xdx . Вычисляем интеграл:

В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.

Теорема . Если функции P (x ,y ) , Q (x ,y ) и их частные производные , - непрерывные в области D функции и в точках этой области частные производные равны, то криволинейный интеграл не зависит от пути интегрирования по линии L , находящейся в области D .

Кривая дана в параметрической форме

Пусть в пространстве дана кривая

.

а в подынтегральные функции подставим

выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:

Пример 4. Вычислить криволинейный интеграл

,

если L - часть эллипса

отвечающая условию y ≥ 0 .

Решение. Данная кривая - часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра .

можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:

Если дан криволинейный интеграл и L - замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина .

Больше примеров вычисления криволинейных интегралов

Пример 5. Вычислить криволинейный интеграл

где L - отрезок прямой между точками её пересечения с осями координат.

Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим , . Подставив x = 0 , получим , . Таким образом, точка пересечения с осью Ox - A (2; 0) , с осью Oy - B (0; −3) .

Из уравнения прямой выразим y :

.

, .

Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:

В подынтегральном выражении выделяем множитель , выносим его за знак интеграла. В получившемся после этого подынтегральном выражении применяем подведение под знак дифференциала и окончательно получаем.

Вычисление объема удобнее вести в цилиндрических координатах. Уравнение окружности, ограничивающей областьD , конуса и параболоида

соответственно принимают вид ρ = 2, z = ρ , z = 6 − ρ 2 . С учетом того, что данное тело симметрично относительно плоскостей xOz и yOz . имеем

6− ρ 2

V = 4 ∫ 2 dϕ ∫ ρ dρ ∫ dz = 4 ∫ 2 dϕ ∫ ρ z

6 ρ − ρ 2 d ρ =

4 ∫ d ϕ∫ (6 ρ − ρ3 − ρ2 ) d ρ =

2 d ϕ =

4 ∫ 2 (3 ρ 2 −

∫ 2 d ϕ =

32π

Если не учитывать симметрию, то

6− ρ 2

32π

V = ∫

dϕ ∫ ρ dρ ∫ dz =

3. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

Обобщим понятие определенного интеграла на случай, когда областью интегрирования является некоторая кривая. Интегралы такого рода называются криволинейными. Различают два типа криволинейных интегралов: криволинейные интегралы по длине дуги и криволинейные интегралы по координатам.

3.1. Определение криволинейного интеграла первого типа (по длине дуги). Пусть функция f (x, y) определена вдоль плоской кусочно-

гладкой1 кривой L , концами которой будут точки A и B . Разобьем кривую L произвольным образом на n частей точками M 0 = A , M 1 ,... M n = B . На

каждой из частичных дуг M i M i + 1 выберем произвольную точку (x i , y i ) и вычислим значения функции f (x, y) в каждой из этих точек. Сумма

1 Кривая называется гладкой, если в каждой ее точке существует касательная, непрерывно изменяющаяся вдоль кривой. Кусочногладкой кривой называется кривая, состоящая из конечного числа гладких кусков.

n− 1

σ n = ∑ f (x i , y i ) ∆ l i ,

i = 0

где∆ l i – длина частичной дуги M i M i + 1 , называется интегральной суммой

для функции f (x , y ) по кривой L . Обозначим наибольшую из длин

частичных дуг M i M i + 1 , i =

0 ,n − 1 черезλ , то есть λ = max ∆ l i .

0 ≤i ≤n −1

Если существует конечный предел I интегральной суммы (3.1)

стремлении к нулю наибольшей из длин частичных дугM i M i + 1 ,

зависящий ни от способа разбиения кривой L на частичные дуги, ни от

выбора точек (x i , y i ) , то этот предел называется криволинейным интегралом первого типа (криволинейным интегралом по длине дуги) от функции f (x , y ) по кривой L и обозначается символом ∫ f (x , y ) dl .

Таким образом, по определению

n− 1

I = lim ∑ f (xi , yi ) ∆ li = ∫ f (x, y) dl.

λ → 0 i = 0

Функция f (x , y ) называется в этом случае интегрируемой вдоль кривой L ,

кривая L = AB - контуром интегрирования, А – начальной, а В - конечной точками интегрирования, dl - элементом длины дуги.

Замечание 3.1. Если в (3.2) положить f (x , y ) ≡ 1 для (x , y ) L , то

получим выражение длины дуги L в виде криволинейного интеграла первого типа

l = ∫ dl.

Действительно, из определения криволинейного интеграла следует,

dl = lim n − 1

∆l

Lim l = l .

λ → 0 ∑

λ→ 0

i = 0

3.2. Основные свойства криволинейного интеграла первого типа

аналогичны свойствам определенного интеграла:

1 о . ∫ [ f1 (x, y) ± f2 (x, y) ] dl = ∫ f1 (x, y) dl ± ∫ f2 (x, y) dl.

2 о . ∫ cf (x , y ) dl = c ∫ f (x , y ) dl , где с - константа.

и L , не

3 о . Если контур интегрирования L разбит на две части L

имеющие общих внутренних точек, то

∫ f (x, y)dl = ∫ f (x, y)dl + ∫ f (x, y)dl.

4 о .Отметим особо, что величина криволинейного интеграла первого типа не зависит от направления интегрирования, так как в формировании интегральной суммы (3.1) участвуют значения функции f (x , y ) в

произвольных точках и длины частичных дуг ∆ l i , которые положительны,

независимо от того, какую точку кривой AB считать начальной, а какую – конечной, то есть

f (x, y) dl = ∫ f (x, y) dl .

3.3. Вычисление криволинейного интеграла первого типа

сводится к вычислению определенных интегралов.

x= x(t)

Пусть кривая L задана параметрическими уравнениями

y= y(t)

Пустьα и β – значения параметра t , соответствующие началу (точка А ) и

концу (точка В )

[α , β ]

x (t ), y (t ) и

производные

x (t), y (t)

Непрерывны,

f (x , y ) -

непрерывна вдоль кривой L . Из курса дифференциального исчисления

функций одной переменной известно, что

dl = (x (t))

+ (y (t ))

∫ f (x, y) dl = ∫ f (x(t), y(t))

(x (t )

+ (y (t ))

∫ x2 dl,

Пример 3.1.

Вычислить

окружности

x= a cos t

0 ≤ t ≤

y= a sin t

Решение. Так как x (t ) = − a sin t , y (t ) = a cos t , то

dl =

(− a sin t) 2 + (a cos t) 2 dt = a2 sin 2 t + cos 2 tdt = adt

и по формуле (3.4) получаем

Cos 2t )dt =

sin 2t

∫ x2 dl = ∫ a2 cos 2 t adt = a

3 ∫

πa 3

sin π

L задана

уравнением

y = y(x) ,

a ≤ x ≤ b

y(x)

непрерывна вместе со своей производной y

(x ) при a ≤ x ≤ b , то

dl =

1+ (y (x ))

и формула (3.4) принимает вид

∫ f (x, y) dl = ∫ f (x, y(x))

(y (x ))

L задана

x = x(y), c ≤ y ≤ d

x (y )

уравнением

непрерывна вместе со своей производной x (y ) при c ≤ y ≤ d , то

dl =

1+ (x (y ))

и формула (3.4) принимает вид

∫ f (x, y) dl = ∫ f (x(y), y)

1 + (x (y ))

Пример 3.2. Вычислить ∫ ydl, где L – дуга параболы

2 x от

точки А (0,0) до точки В (2,2).

Решение . Вычислим интеграл двумя способами, применяя

формулы (3.5) и(3.6)

1)Воспользуемся формулой (3.5). Так как

2x (y ≥ 0), y ′

2 x =

2 x ,

dl =

1+ 2 x dx ,

3 / 2 2

1 (5

3 2 − 1) .

∫ ydl = ∫

2 x + 1 dx = ∫ (2 x + 1) 1/ 2 dx =

1 (2x + 1)

2)Воспользуемся формулой (3.6). Так как

x = 2 , x

Y, dl

1 + y

y 1 + y 2 dy =

(1 + y

/ 2 2

∫ ydl = ∫

3 / 2

1 3 (5 5 − 1).

Замечание 3.2. Аналогично рассмотренному, можно ввести понятие криволинейного интеграла первого типа от функции f (x , y , z ) по

пространственной кусочно-гладкой кривой L :

Если кривая L задана параметрическими уравнениями

α ≤ t ≤ β , то

dl =

(x (t ))

(y (t ))

(z (t ))

∫ f (x, y, z) dl =

= ∫

dt .

f (x (t ), y (t ), z (t )) (x (t ))

(y (t ))

(z (t ))

x= x(t) , y= y(t)

z= z(t)

Пример 3.3. Вычислить∫ (2 z − x 2 + y 2 ) dl , где L – дуга кривой

x= t cos t

0 ≤ t ≤ 2 π.

y = t sin t

z = t

x′ = cost − t sint, y′ = sint + t cost, z′ = 1 ,

dl =

(cos t − t sin t)2 + (sin t + t cos t)2 + 1 dt =

Cos2 t − 2 t sin t cos t + t2 sin2 t + sin2 t + 2 t sin t cos t + t2 cos2 t + 1 dt =

2 + t2 dt .

Теперь по формуле (3.7) имеем

∫ (2z −

x2 + y2 ) dl = ∫ (2 t −

t 2 cos 2 t + t 2 sin 2 t )

2 + t 2 dt =

T 2 )

= ∫

t 2 + t

dt =

4 π

− 2 2

цилиндрической

поверхности,

которая составлена из перпендикуляров к

плоскости xOy ,

восстановленных в точках

(x , y )

L = AB

и имеющих

представляет собой массу кривой L , имеющей переменную линейную плотность ρ (x , y )

линейная плотность которой меняется по закону ρ (x , y ) = 2 y .

Решение. Для вычисления массы дуги AB воспользуемся формулой (3.8). Дуга AB задана параметрически, поэтому для вычисления интеграла (3.8) применяем формулу (3.4). Так как

1+ t

dt ,

x (t) = 1, y (t) = t , dl =

3/ 2 1

1 (1+ t

m = ∫ 2 ydl = ∫

1 2 + t2 dt = ∫ t 1 + t2 dt =

(2 3 / 2 −

1) =

2 2 − 1.

3.4. Определение криволинейного интеграла второго типа (по

координатам ). Пусть функция

f (x , y ) определена вдоль плоской

кусочно-гладкой кривойL , концами которой будут точки А и В . Опять

произвольным

разобьем

кривую L

M 0 = A , M 1 ,... M n = B Так же выберем в пределах

каждой частичной

дуги M i M i + 1

произвольную точку

(xi , yi )

и вычислим

16.3.2.1. Определение криволинейного интеграла первого рода. Пусть в пространстве переменных x,y,z задана кусочно-гладкая кривая , на которой определена функция f (x ,y ,z ).Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и длину дуги , и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция f (x ,y ,z ) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом первого рода, или криволинейным интегралом по длине дуги от функции f (x ,y ,z ) по кривой , и обозначается (или ).

Теорема существования. Если функция f (x ,y ,z ) непрерывна на кусочно-гладкой кривой , то она интегрируема по этой кривой.

Случай замкнутой кривой. В этом случае в качестве начальной и конечной точки можно взять произвольную точку кривой. Замкнутую кривую в дальнейшем будем называть контуром и обозначать буквой С . То, что кривая, по которой вычисляется интеграл, замкнута, принято обозначать кружочком на знаке интеграла: .

16.3.2.2. Свойства криволинейного интеграла первого рода. Для этого интеграла имеют место все шесть свойств, справедливых для определённого, двойного, тройного интеграла, от линейности до теоремы о среднем . Сформулировать и доказать их самостоятельно . Однако для этого интеграла справедливо и седьмое, персональное свойство:

Независимость криволинейного интеграла первого рода от направления прохождения кривой: .

Доказательство. Интегральные суммы для интегралов, стоящих в правой и левой частях этого равенства, при любом разбиении кривой и выборе точек совпадают (всегда длина дуги ), поэтому равны их пределы при .

16.3.2.3. Вычисление криволинейного интеграла первого рода. Примеры. Пусть кривая задана параметрическими уравнениями , где - непрерывно дифференцируемые функции, и пусть точкам , которые задают разбиение кривой, соответствуют значения параметра , т.е. . Тогда (см. раздел 13.3. Вычисление длин кривых) . По теореме о среднем, существует точка такая, что . Выберем точки , получающиеся при этом значении параметра: . Тогда интегральная сумма для криволинейного интеграла будет равна интегральной сумме для определенного интеграла . Так как , то, переходя к пределу при в равенстве , получим

Таким образом, вычисление криволинейного интеграла первого рода сводится к вычислению определённого интеграла по параметру. Если кривая задана параметрически, то этот переход не вызывает трудностей; если дано качественное словесное описание кривой, то основной трудностью может быть введение параметра на кривой. Ещё раз подчеркнём, что интегрирование всегда ведётся в сторону возрастания параметра.



Примеры. 1. Вычислить , где - один виток спирали

Здесь переход к определённому интегралу проблем не вызывает: находим , и .

2. Вычислить тот же интеграл по отрезку прямой, соединяющей точки и .

Здесь прямого параметрического задания кривой нет, поэтому на АВ необходимо ввести параметр. Параметрические уравнения прямой имеют вид где - направляющий вектор, - точка прямой. В качестве точки берем точку , в качестве направляющего вектора - вектор : . Легко видеть, что точка соответствует значению , точка - значению , поэтому .

3. Найти, где - часть сечения цилиндра плоскостью z =x +1, лежащая в первом октанте.

Решение: Параметрические уравнения окружности - направляющей цилиндра имеют вид x =2cosj, y =2sinj, и так как z=x +1, то z = 2cosj+1. Итак,

поэтому

16.3.2.3.1. Вычисление криволинейного интеграла первого рода. Плоский случай. Если кривая лежит на какой-либо координатной плоскости, например, плоскости Оху , и задаётся функцией , то, рассматривая х как параметр, получаем следующую формулу для вычисления интеграла: . Аналогично, если кривая задаётся уравнением , то .

Пример. Вычислить , где - четверть окружности , лежащая в четвёртом квадранте.

Решение. 1. Рассматривая х как параметр, получаем , поэтому

2. Если за параметр взять переменную у , то и .

3. Естественно, можно взять обычные параметрические уравнения окружности : .

Если кривая задана в полярных координатах , то , и .

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz